If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+44t+5=0
a = -16; b = 44; c = +5;
Δ = b2-4ac
Δ = 442-4·(-16)·5
Δ = 2256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2256}=\sqrt{16*141}=\sqrt{16}*\sqrt{141}=4\sqrt{141}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-4\sqrt{141}}{2*-16}=\frac{-44-4\sqrt{141}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+4\sqrt{141}}{2*-16}=\frac{-44+4\sqrt{141}}{-32} $
| U+25=3u+3 | | -16t^2+44+5=0 | | x/5=108/90 | | 8x+4-5x-6+3x=8+4x-4-x | | y/19+10=14 | | 36x3+24x2=-4x | | -6+8+5x=47 | | 9f+(-2f+8)=3f+(5-6f)-(-5f-18 | | F(x)=-8+11(-8)+20 | | F(x)=x2+11x+20 | | 8(c-1)=7+1 | | 17-3x+3=(-2x)-6 | | X-10+2x-11+43=180 | | X/4+17=x/3 | | 6x-8=19+3x | | 3.5x-13=-2.9x | | 7x+7=-4x+18 | | 3x+42=3x-18 | | 7v-9=-10+6v | | -6n-2=-9n-11 | | -5+3n-7=18+6n | | 10+x+6=12-x | | -19=2/10x=9 | | 4t^2=t+4 | | 7(x-2)+3=46 | | 23+28y=-21+14y | | 3y^2=8y+16 | | 6d-4-8=26 | | x²+x-4160=0 | | -0.2t^2+2t=0 | | 6x=8.25x | | -27+9x=6x+3 |